博客
关于我
利用 SQLAlchemy 实现轻量级数据库迁移
阅读量:686 次
发布时间:2019-03-17

本文共 2942 字,大约阅读时间需要 9 分钟。

lightweight database migration tools with python

in daily work, it's common to need to migrate data between different databases. here are some simple methods to consider:

copy data between databases

  • kettle's table copy wizard

    previously wrote a blog post about this: a simple guide to using kettle for database migrations.

  • use csv as intermediary

    requires time to process field data types and ensure data consistency.

  • utilize sqlalchemy

    wrote a blog post about this too: a step-by-step guide to using sqlalchemy for database migrations. the process involves creating models and manually mapping field types.

  • step-by-step database migration

    assuming you need to migrate the emp_master table from sql server to sqlite, follow these steps:

  • create the target database schema

    use sqlacodegen to generate sqlalchemy models based on the source database:

    sqlacodegen mssql+pymssql://user:pwd@localhost:1433/testdb > models.py --tables emp_master

    adjust the generated code manually to match your needs:

    # models.pyfrom sqlalchemy import Column, Integer, Stringfrom sqlalchemy.ext.declarative import declarative_baseBase = declarative_base()class EmpMaster(Base):    __tablename__ = 'emp_master'    emp_id = Column(Integer, primary_key=True)    gender = Column(String(10))    age = Column(Integer)    email = Column(String(50))    phone_nr = Column(String(20))    education = Column(String(20))    marital_stat = Column(String(20))    nr_of_children = Column(Integer)

    create the database and table using sqlalchemy:

    # create_schema.pyfrom sqlalchemy import create_enginefrom models import Baseengine = create_engine('sqlite:///employees.db')Base.metadata.create_all(engine)
  • migrate data using pandas

    read data from source database to a pandas dataframe and write it to the target database:

    # data_migrate.pyfrom sqlalchemy import create_engineimport pandas as pdsource_engine = create_engine('mssql+pymssql://user:pwd@localhost:1433/testdb')target_engine = create_engine('sqlite:///employees.db')df = pd.read_sql('emp_master', source_engine)df.to_sql('emp_master', target_engine, index=False, if_exists='replace')
  • advantages of using pandas for data migration

    pandas provides a convenient way to handle data transformation and export to various database formats. its read_sql() function simplifies data extraction from databases, while to_sql() handles the insertion process.

    why choose pandas for database migration

    pandas is lightweight and efficient for data migration tasks. it allows for quick data visualization and manipulation before storage in the target database.

    potential issues to address

    • ensure that data types are compatible between source and target databases.
    • handle null values and data validation to maintain data integrity.
    • test the migration process on a small dataset before applying it to the live database.

    by following these steps, you can efficiently migrate your database while minimizing risks and ensuring data consistency.

    转载地址:http://zjthz.baihongyu.com/

    你可能感兴趣的文章
    NIH发布包含10600张CT图像数据库 为AI算法测试铺路
    查看>>
    Nim教程【十二】
    查看>>
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>