博客
关于我
利用 SQLAlchemy 实现轻量级数据库迁移
阅读量:686 次
发布时间:2019-03-17

本文共 2942 字,大约阅读时间需要 9 分钟。

lightweight database migration tools with python

in daily work, it's common to need to migrate data between different databases. here are some simple methods to consider:

copy data between databases

  • kettle's table copy wizard

    previously wrote a blog post about this: a simple guide to using kettle for database migrations.

  • use csv as intermediary

    requires time to process field data types and ensure data consistency.

  • utilize sqlalchemy

    wrote a blog post about this too: a step-by-step guide to using sqlalchemy for database migrations. the process involves creating models and manually mapping field types.

  • step-by-step database migration

    assuming you need to migrate the emp_master table from sql server to sqlite, follow these steps:

  • create the target database schema

    use sqlacodegen to generate sqlalchemy models based on the source database:

    sqlacodegen mssql+pymssql://user:pwd@localhost:1433/testdb > models.py --tables emp_master

    adjust the generated code manually to match your needs:

    # models.pyfrom sqlalchemy import Column, Integer, Stringfrom sqlalchemy.ext.declarative import declarative_baseBase = declarative_base()class EmpMaster(Base):    __tablename__ = 'emp_master'    emp_id = Column(Integer, primary_key=True)    gender = Column(String(10))    age = Column(Integer)    email = Column(String(50))    phone_nr = Column(String(20))    education = Column(String(20))    marital_stat = Column(String(20))    nr_of_children = Column(Integer)

    create the database and table using sqlalchemy:

    # create_schema.pyfrom sqlalchemy import create_enginefrom models import Baseengine = create_engine('sqlite:///employees.db')Base.metadata.create_all(engine)
  • migrate data using pandas

    read data from source database to a pandas dataframe and write it to the target database:

    # data_migrate.pyfrom sqlalchemy import create_engineimport pandas as pdsource_engine = create_engine('mssql+pymssql://user:pwd@localhost:1433/testdb')target_engine = create_engine('sqlite:///employees.db')df = pd.read_sql('emp_master', source_engine)df.to_sql('emp_master', target_engine, index=False, if_exists='replace')
  • advantages of using pandas for data migration

    pandas provides a convenient way to handle data transformation and export to various database formats. its read_sql() function simplifies data extraction from databases, while to_sql() handles the insertion process.

    why choose pandas for database migration

    pandas is lightweight and efficient for data migration tasks. it allows for quick data visualization and manipulation before storage in the target database.

    potential issues to address

    • ensure that data types are compatible between source and target databases.
    • handle null values and data validation to maintain data integrity.
    • test the migration process on a small dataset before applying it to the live database.

    by following these steps, you can efficiently migrate your database while minimizing risks and ensuring data consistency.

    转载地址:http://zjthz.baihongyu.com/

    你可能感兴趣的文章
    node.js 简易聊天室
    查看>>
    node.js 配置首页打开页面
    查看>>
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>
    Nodejs express 获取url参数,post参数的三种方式
    查看>>
    nodejs http小爬虫
    查看>>
    nodejs libararies
    查看>>
    nodejs npm常用命令
    查看>>
    NodeJS 导入导出模块的方法( 代码演示 )
    查看>>
    nodejs 的 Buffer 详解
    查看>>
    nodejs 读取xlsx文件内容
    查看>>
    nodejs 运行CMD命令
    查看>>